一、摩擦阻尼器力学性能要求
1.起滑摩擦力的实测值不宜大于Zui大滑动摩擦力的1.1倍;
2.初始刚度的实测值不应小于设计值的85%;
3.极限位移值不应小于极限位移设计值;
4.滑动摩擦力,滑动后每级加载的第2~5个循环,每个循环的滑动摩擦力实测值与设计值相比,偏差在±15%以内;各循环的滑动摩擦力实测平均值与设计值相比,偏差在=10%以内。每级加载Zui大位移处的摩擦力实测值与零位移处摩擦力实测值相比,偏差在±5%以内;
5.滞回曲线,实测滞回曲线应光滑,无异常。在同一测试条件下,第2圈以后的任一循环中滞回曲线包络面积实测值与产品设计值相比,偏差不应超过=15%;各循环中滞回曲线包络面积实测平均值与产品设计值相比,偏差不应超过±10%;
二、摩擦阻尼器耐久性要求
1.疲劳性能:
循环加载自第2圈起,任一循环的Zui大、Zui小滑动摩擦力实测值与设计值相比,偏差在±20%以内。循环加载自第2圈起,任一循环的Zui大、Zui小滑动摩擦力实测值与所有循环的Zui大、Zui小滑动摩擦力实测平均值相比,偏差在=15%以内;
任一循环的滞回曲线面积实测值与所有循环的滞回曲线面积实测平均值相比,偏差在±15%以内;
2.耐久性:
滑动摩擦力平均值与初次检测滑动摩擦力平均值相比,偏差在±10%以内;
所有循环的滞回曲线形状不应明显异常;
减震试验的目的是通过模拟实际使用条件下的振动和冲击,检测减震产品的性能指标和可靠性,以确保其在实际使用中能够达到预期的减震效果,并提高产品的质量和安全性。
根据试验方法的不同,减震试验可以分为以下几类:
1.自由衰减振动试验。自由衰减振动试验是一种常用的减震试验方法,它通过将减震产品放置在一个振动台上,利用激振器产生一定频率和幅值的正弦波振动,并测量减震产品的自由衰减振幅和时间常数等参数。该方法主要用于检测减震产品的阻尼性能和隔振性能。
2.强迫振动试验。强迫振动试验是将减震产品安装在振动台上,通过激振器施加不同频率和幅值的正弦波振动,测量减震产品的响应幅值和相位等参数。该方法主要用于检测减震产品的动态特性和传递函数。
3.冲击试验。冲击试验是一种模拟实际使用中突然冲击条件的试验方法,它通过将减震产品放置在一个冲击台上,利用冲击试验机产生一定能量和加速度的冲击波,并测量减震产品的冲击响应和恢复时间等参数。该方法主要用于检测减震产品的抗冲击性能和稳定性。
1.粘滞阻尼器 VFD
粘滞阻尼器是一种速度相关型阻尼器,运动速度越大,产生的阻尼力也越大,耗散的地震能量也越大。其利用了液体的流动性,液体由于流路面积的变化引发液体压力随之变化而产生阻尼力,整个过程中,动能被转化为热能耗散掉,从而起到耗散地震能量,保护主体结构的作用。目前,在我国越来越多的桥梁、高层建筑、体育场馆中也应用了黏滞阻尼器。
双折线型粘滞阻尼器的特性:
装有减压阀和调压阀两种调节装置,减压阀可防止阻尼力的过大上升;
大地震时也能保持稳定的性能,阻尼器屈服力的设置避免了过大附加应力的发生。
2.粘滞阻尼墙 VFW
粘滞阻尼墙由固定在下层梁上的钢制箱体和填充在钢箱内的粘滞阻尼材料组成。在地震作用下,结构上下楼层之间将产生相对速度,固定在上层楼面梁的内钢板将会在钢籍内往复运动,使钢箱内的粘滞材料产生阻尼,从而减小结构的动力反应,达到结构耗能减振控制的目的。
粘滞阻尼墙是一种性能良好的消能减震部件。用于建筑结构减震具有以下优点:
1)制作安装方便;
2)不需要复奈的装置和特殊的材料;
3)使墙体与高粘滞材料的作用面积增大,吸收大量的地震能量;
4)适用范围广。
当发生地震时,粘滞阻尼器中的粘滞液体受到挤压,产生阻尼力,从而吸收地震能量。福建建筑减震产品供应,阻尼器作为一种定量的消能、减振装置在建筑工程中应用,当发生地震特别是罕遇的地震时,起保护建筑的作用。IKO轴承断裂失效主要原因是缺陷与过载两大因素。当外加载荷超过材料强度极限而造成零件断裂称为过载断裂。过载原因主要是主机突发故障或安装不当。轴承零件的微裂纹、缩孔、气泡、大块外来杂物、过热组织及局部烧伤等缺陷在冲击过载或剧烈振动时也会在缺陷处引起断裂,称为缺陷断裂。应当指出,轴承在制造过程中,对原材料的入厂复验、锻造和热处理质量控制、加工过程控制中可通过仪器正确分析上述缺陷是否存在,今后仍必须加强控制。