在我国中压电网的供电系统中,大部分为小电流接地系统(即中性点不接地或经消弧线圈或电阻接地系统)。我国采用经消弧线圈接地方式已运行多年,但近几年有部分区域采用中性点经小电阻接地方式,为此对这两种接地方式作以分析,对于中性点不接地系统,因其是一种过度形式,其随着电网的发展终将发展到上述两种方式。 1.中性点经小电阻接地方式世界上以美国为主的部分国家采用中性点经小电阻接地方式,原因是美国在历史上过高的估计了弧光接地过电压的危害性,而采用此种方式,用以泄放线路上的过剩电荷,来限制此种过电压。中性点经小电阻接地方式中,一般选择电阻的值较小。在系统单相接地时,控制流过接地点的电流在500A左右,也有的控制在100A左右,通过流过接地点的电流来启动零序保护动作,切除故障线路。其优缺点是 1.1.系统单相接地时,健全相电压不升高或升幅较小,对设备绝缘等级要求较低,其耐压水平可以按相电压来选择。 1.2.接地时,由于流过故障线路的电流较大,零序过流保护有较好的灵敏度,可以比较容易检除接地线路。 1.3.由于接地点的电流较大,当零序保护动作不及时或拒动时,将使接地点及附近的绝缘受到更大的危害,导致相间故障发生。 1.4.当发生单相接地故障时,无论是性的还是非性的,均作用与跳闸,使线路的跳闸次数大大增加,严重影响了用户的正常供电,使其供电的可靠性下降。 2.中性点经消弧线圈接地方式 1916年发明了消弧线圈,并于1917年首台在德国Pleidelshein电厂投运至今,已有84年的历史,运行经验表明,其广泛适用于中压电网,在世界范围有德国、中国、前苏联和瑞典等国的中压电网均长期采用此种方式,显着提高了中压电网的安全经济运行水平。 采用中性点经消弧线圈接地方式,在系统发生单相接地时,流过接地点的电流较小,其特点是线路发生单相接地时,可不立即跳闸,按规程规定电网可带单相接地故障运行2小时。从实际运行经验和资料表明,当接地电流小于10A时,电弧能自灭,因消弧线圈的电感的电流可抵消接地点流过的电容电流,若调节得很好时,电弧能自灭。对于中压电网中日益增加的电缆馈电回路,虽接地故障的概率有上升的趋势,但因接地电流得到补偿,单相接地故障并不发展为相间故障。中性点经消弧线圈接地方式的供电可靠性,大大的高于中性点经小电阻接地方式,但中性点经消弧线圈接地方式也存在着以下问题 ![]() 2.2.因目前运行在中压电网的消弧线圈大多为手动调匝的结构,必须在退出运行才能调整,也没有在线实时检测电网单相接地电容电流的设备,故在运行中不能根据电网电容电流的变化及时进行调节,不能很好的起到补偿作用,仍出现弧光不能自灭及过电压问题。 中性点经消弧线圈接地方式存在的两大缺点,也是两大技术难题,多年来电力学者致力于解决这一技术难题,随着微电子技术、检测技术的发展和应用,我国已研制生产出自动跟踪消弧线圈及单相接地选线装置,并已投入实际运行取得良好效果,现在正处在推广应用阶段。 |
概述
MSS ASIsafe 基本型(左)和带两个扩展模块的 MSS ASIsafe 扩展型(右)
模块化安全系统 (MSS) 是 ASIsafe 本地解决方案的核心。使用它,可对来自 AS-Interface 网络中连接的ASIsafe 节点(如输入模块、急停按钮或安全开关)的信号产生安全型响应。
MSS 支持安全等级达到 EN ISO 13849-1 的 Cat4 或 IEC 62061 的SIL 3 的安全型应用。
通过 MSS 的本地安全输出或通过 AS-Interface 网络中的分布式安全 AS-Interface输出实现安全断开。
使用 SIRIUS Safety ES 组态 MSS 中的安全功能。通过系统接口并借助于 PC 电缆或存储模块,可在MSS 中直接传输组态。如果使用 DP 接口模块,则还可通过 PROFIBUS DP 传输组态。
MSS 支持大量不同的安全功能。根据具体需要,可用现成功能块的形式对这些功能进行定制。
支持的安全功能包括:
紧急停机按钮
开关垫
防护门监控
防护门锁销机构
认证开关
双手控制系统
BWS 监控
暂时失效
操作模式选择开关
由于漏电保护装置在防止人身伤害及火灾事故发生等方面的重要作用,在住宅领域也得到了广泛的应用,特别是《住宅设计规范》简称《规范》 GB50096-1999在1999年6月1日已明确了漏电保护装置的设置方法,但在实施中,由于漏电保护装置有选择性差的缺点,在行业内也引起了一些争论,主要表现在6.5.2条第7款—“每幢住宅的总电源进线断路器,应具有漏电保护功能”及第4款—“除空调电源插座外,其他电源插座电路应设置漏电保护装置”上。普遍的观点是“总电源加漏电选择性差,空调电源插座也应加漏电开关等”。笔者赞同这样的观点。目前有些**的观点仍然认为《规范》在防止火灾等方面有积极的作用,但笔者在实践中认为,此种观点还是有值得商榷的地方,主要表现在选择性差带来的问题与发生漏电的可能性及经济性上,笔者认为可以采用出线回路加漏电开关的方法来解决选择性差的问题,下面从理论及实践上、可靠性及经济性上对有关住宅规范条款的合理性发表自己的观点及建议,供大家参考。 一、总进线断路器加漏电选择性差 按《规范》空调及照明回路可不加漏电保护,认为空调及照明回路不会有漏电的情况发生。而事实上空调及照明回路不出现漏电情况是不可能的,特别是住户二次装修的质量很难控制,灯具的质量也参差不齐,空调回路也不能保证不接别的设备,漏电的可能性会经常存在,一旦有一户出现漏电的情况,整个单元都会断电,会给管理上及住户带来很大的不便。实际情况也是如此,如我公司开发的深圳“XX花园”在出线开关加了漏电,入伙初期也经常出现漏电的情况,如果主开关加漏电那就会出现很多问题,给大家都会造成很多不便,并且故障点也难查找。 二、住宅进线回路出现漏电发生火灾的可能性小 我们知道一般住宅的进线回路,均敷设在电气竖井内或穿管暗敷在楼板内,这种情况发生火灾的可能性是极低的,确实有些**商住性质的住宅进线是敷设在楼层吊顶的桥架内,但也有其他的用电设备,如消防排烟风机、送风风机等的电源线敷设在桥架内,按目前的有关“规范”对动力电源没有漏电保护的规定,这样标准就不统一,当然这种情况采用出线回路加漏电开关的办法参见后面系统图 可以解决。 ![]() 1 在此时推出此项规定,会造成社会资源的一定的浪费,笔者在实践中发现,此时市场上质量上能满足要求的、带漏电的主开关都是进口产品,价格很高;国产品牌的大容量的产品基本上没有,可选择的余地很小,这样就会增加许多投资。推出的时机不当。 2 此项决定性能价格比太差。笔者粗略估计一下,以一个总开关带10户、每户100M2计,按增加2000元投资算,每平方米增加2元钱,水电造价估算按深圳信息价约125元/M2,那么就增加了2/125×100%=1.6%,而起到的作用是发生概率很小的情况,特别是新建的楼盘已经经过了多次绝缘、接地检测发生故障的可能性是很小的,这样的性能价格比不是十分合理的。 四、空调及照明回路不加漏电保护标准不统一 一方面总开关加漏电保护提高了标准,而另一方面又空调及照明回路不加保护降低了标准,显然标准不统一。前面已经谈到住户的二次装修、灯具的质量都可能引起漏电,就算是空调回路也不能保证不漏电,比如在清洁的时候就不能保证没有漏电的危险。 五、对有关防漏电火灾的意见及建议 1 笔者认为目前不应采用此项规定,应该先有一个过度期,待产品的价格及质量达到可接受的水平,选择及配合问题有很好的办法解决的时候,才开始执行强制标准,目前执行此项规定会在一定程度上影响人们正常的生活。 2 目前解决选择及配合问题没有太好的办法,因为通过漏电电流的计算来确定漏电点的位置是一件非常难的事情,几乎就不可能。很好的选择性配合就难以实现,按《低压配电设计规范》GB50054第4.4.21条的规定漏电保护器的运作电流不应超过0.5A,那么用整定值配合来实现选择性的要求就不可能了,只有采用其他的方法,而这样的造价就会更高。笔者认为目前只有采用在总电表箱出线回路加漏电带延时的方法。 3 笔者认为照明回路应单独加漏电开关,这样做对住户的使用是非常有利的,又不会增加很大的投资,空调回路仍与其他插座回路合在一起加漏电开关,结合起来系统示意图 六、结论 通过以上分析可以确认,照明及空调回路应该加漏电开关,总箱出线回路加漏电开关可以解决选择性差的问题。 |