数据显示,“十二五”规划中将新能源列为战略新兴产业,其中的风能发电规模将在目前3000万千瓦、居二的风电装机容量基础上,至2015年和2020年,分别达到9000万千瓦和1.5亿千瓦的风电装机容量,成为一风电大国。为保证全部可再生能源发出的电力可以被收购上网,国家《可再生能源法》以法律的形式规定了“全额保障性收购制度”,国家对可再生能源的上网价格按照其投资成本进行补贴。
值得关注的是,统计显示,我国目前完成的风电装机总量只有不到20%的比例实现发电并网。许多风力发电场经常发生“弃风”、“停机”现象,产生了大量的投资浪费。许多业内人士认为,缺乏大容量电池储能系统是风能并网的瓶颈所在,我国应该加快相关技术的研发,以便更好地服务于我国的可再生能源发展。
大容量电池储能系统匮乏
据了解,风能较难实现并网的原因在于它是一种“劣质”电能。所谓“劣质”,是指风能固有的随机性、间歇性特征决定了其属于能量密度低、稳定差、调节能力差的电能,发电量受天气及地域的影响较大,若直接将其全部电力并网,会对电网安全、稳定、经济运行以及电网的供电质量造成不利影响。为了解决这一瓶颈问题,国内现在采用的方案主要有两个,一是通过风火电混送并网;二是使用抽水蓄能,将不稳定的风电转化为水能,再用水能发电。但这两种方案在实际运作中均有弊端或障碍。段祺华表示,正是基于上述原因,近几年日本、美国、欧洲及中东地区国家正在大力推广和应用先进的大容量电池储能技术,并将该技术配套于风能等可再生能源的并网,例如墨西哥和美国南加州正在建设中的总规模为1600万千瓦的风电场已经开始配套100万千瓦钠硫电池储能系统。大容量电池储能系统没有污染、零碳排放,使用它与风电等可再生能源发电装置联合运行,对其进行稳定干预,可使随即变化输出的风电转化为稳定输出的电能,从而实现风能的大规模并网发电。“为风电等可再生能源配装合适的大容量电池储能系统是解决我国目前风能发电无法并网的瓶颈问题的有效途径。”段祺华认为