RT-Linux是基于Linux并可运行于多种硬件平台的多任务实时操作系统。通过修改Linux内核的硬件层,采用中断仿真技术,在内核和硬件之间实现了一个小而高效的实时内核,并在实时内核的基础上形成了小型的实时系统,而Linux内核仅作为实时系统Zui低优先级的任务运行。对于普通X86的硬件结构,RT-Linux拥有出色的实时性和稳定性,其Zui大中断延迟时间不超过15μs,Zui大任务切换误差不超过35μs。这些实时参数与系统负载无关,而取决于计算机的硬件,如在PII350,64M内存的普通PC机上,系统Zui大延迟时间不超过1μs。RT-Linux按实时性不同分为实时域和非实时域,其结构如图2所示。
实时域在设计上遵循实时操作系统的设计原则,即系统具有透明性、模块化和可扩展性。RT-Linux的实时内核由一个核心部分和多个可选部分组成,核心部分只负责高速中断处理,支持SMP操作且不会被底层同步或中断例程延迟或重入。
6ES7 321-1BH02-0AA0 | 开入模块(16点,24VDC) |
6ES7 321-1BH02-9AJ0 | 开入模块(16点,24VDC)组合件 (6ES7 321-1BH02-0AA0+6ES7 392-1AJ00-0AA0) |
6ES7 321-1BH10-0AA0 | 开入模块(16点,24VDC) |
6ES7 321-1BH50-0AA0 | 开入模块(16点,24VDC,源输入) |
6ES7 321-1BH50-9AJ0 | 开入模块(16点,24VDC,源输入)组合件 (6ES7 321-1BH50-0AA0+6ES7392-1AJ00-0AA0) |
6ES7 321-1BL00-0AA0 | 开入模块(32点,24VDC) |
6ES7 321-1BL00-9AM0 | 开入模块(32点,24VDC)组合件 (6ES7 321-1BL00-0AA0+6ES7 392-1AM00-0AA0) |
6ES7 321-7BH01-0AB0 | 开入模块(16点,24VDC,诊断能力) |
6ES7 321-1EL00-0AA0 | 开入模块(32点,120VAC) |
6ES7 321-1FF01-0AA0 | 开入模块(8点,120/230VAC) |
6ES7 321-1FF10-0AA0 | 开入模块(8点,120/230VAC)与公共电位单独连接 |
6ES7 321-1FH00-0AA0 | 开入模块(16点,120/230VAC) |
6ES7 321-1FH00-9AJ0 | 开入模块(16点,120/230VAC) (6ES7 321-1FH00-0AA0+6ES7 392-1AJ00-0AA0) |
6ES7 321-1CH00-0AA0 | 开入模块(16点,24/48VDC) |
6ES7 321-1CH20-0AA0 | 开入模块(16点,48/125VDC) |
6ES7 321-1BP00-0AA0 | 光电隔离,每组 16,64 DI,DC 24V,3MS,漏/源 |
6ES7 322-1BP00-0AA0 | 光电隔离,每组 16,64 DO,DC 24V,0.3A(源),总电流2A/组 |
6ES7 322-1BH01-0AA0 | 开出模块(16点,24VDC) |
6ES7 322-1BH01-9AJ0 | 开出模块(16点,24VDC) (6ES7 322-1BH01-0AA0+6ES7 392-1AJ00-0AA0) |
6ES7 322-1BH10-0AA0 | 开出模块(16点,24VDC)高速 |
6ES7 322-1CF00-0AA0 | 开出模块(8点,48-125VDC) |
6ES7 322-8BF00-0AB0 | 开出模块(8点,24VDC)诊断能力 |
6ES7 322-5GH00-0AB0 | 开出模块(16点,24VDC,独立接点,故障保护) |
6ES7 322-1BL00-0AA0 | 开出模块(32点,24VDC) |
6ES7 322-1BL00-9AM0 | 开出模块(32点,24VDC) (6ES7 322-1BL00-0AA0+6ES7 392-1AM00-0AA0) |
6ES7 322-1FL00-0AA0 | 开出模块(32点,120VAC/230VAC) |
6ES7 322-1BF01-0AA0 | 开出模块(8点,24VDC,2A) |
6ES7 322-1FF01-0AA0 | 开出模块(8点,120V/230VAC) |
6ES7 322-5FF00-0AB0 | 开出模块(8点,120V/230VAC,独立接点) |
6ES7 322-1HF01-0AA0 | 开出模块(8点,继电器,2A) |
有容错通信功能的SIMATIC提供了一种新的通信类型,该通信类型具有以下特点:
可用性更高:
发生故障时,凭借其多达4个的冗余连接,可以继续通信。必要的切换工作对于用户来说是透明的。工作简单;
容错处理对于用户也是透明的。可使用用于标准通讯的用户程序,无需修改。冗余功能的定义仅需在参数化阶段就可以完成。
容错通讯目前由 S7-400H(冗余和非冗余配置)和 PC 所支持。对于 PC 来说,需要使用 Redconnect软件包(参见“SIMATIC NET 通讯系统”)。
取决于对可用性的需求,可以使用不同的组态选项:
单一总线或冗余总线。
线型拓扑和环型拓扑总线。
CPU 417-4H、CPU 414-4H 和 CPU 412-3H 的操作系统可自主执行 S7-400H的所有必要附加功能:
数据交换
故障响应(控制转换给备用设备)
两个子设备的同步
自检
冗余原理
S7-400H的工作符合“热备份”模式的主动冗余原理(支持故障发生时的无重启自动切换功能)。根据该原理,在无故障运行期间,两个子单元都处于工作状态。当故障发生时,未出现故障的设备将独立地接管过程控制。
为了确保平稳的控制接管,必须通过中央控制器链路实现高速、可靠的数据交换。